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1. Introduction 
Forest-based climate change mitigation pathways play a crucial role in reducing net greenhouse 
gas emissions and achieving the climate neutrality goals of the European Union (EU). However, 
reaching these goals is challenging due to interactions between climate change, natural 
disturbances, and management strategies. Moreover, conflicts might arise between socio-
economic demands, biodiversity conservation, and various other ecosystem services as the 
aforementioned interactions also influence outcomes of the mitigation pathways. Thus, the 
ForestNavigator project aims to assess the potential and impacts of forest-based mitigation 
pathways using an integrated modelling framework. 

The biodiversity assessment of Work Package 4 (WP4) develops a modelling framework to assess 
the biodiversity impacts of various climate change scenarios and forest management pathways. 
Global environmental changes are profoundly affecting forest ecosystems (Hisano et al., 2018; Sala 
et al., 2000). Among others, this includes direct and indirect effects on biodiversity. Direct effects 
include that climate change is projected to increase extinction risks for many European plants 
(Thuiller et al., 2005), alter forest tree species distributions (Dyderski et al., 2018), and enable range 
expansion of beetle species (Buse et al., 2013). Indirect effects include disturbances due to climate 
change (Schuldt et al., 2020; Seidl et al., 2017), but also adapted forest management strategies 
which both can have impacts on forest structure. Forest structure has been shown to be a driver of 
plant (De Frenne et al., 2013; Gao et al., 2014), beetle (Parisi et al., 2021) and overall (Thom et al., 
2017) species diversity. Thus, climate change and the biodiversity crisis are deeply connected 
(Pettorelli et al., 2021; Pörtner et al., 2023). Furthermore, diversity often increases resilience of 
ecosystems (Chapin III et al., 2000) and is linked to ecosystem functioning (Ruiz‐Benito et al., 2017). 
Consequently, additionally to carbon stocks and socioeconomic aspects, there is the need for 
mitigation pathways to consider conservation measures to counteract the biodiversity crisis and 
its consequences for ecosystem services and society (European Commission, 2020; IPBES, 2019). 
The modelling framework introduces in this report quantifies impacts of climate change scenarios 
and forest management pathways on biodiversity. Thus, we are able to identify scenarios and 
pathways that potentially support or reduce forest biodiversity and identify forest taxa that are 
extraordinarily resilient or vulnerable to the scenarios and pathways. 

To model the response of multiple forest taxa with high conservation relevance to climate change 
scenarios and forest management pathways, we use integrated species distribution models (iSDM). 
More generally, SDMs allow to infer, predict, and project habitat suitability of species in space and 
time, usually in a raster grid cell context, using statistical relationships between environmental 
covariates (e.g., climatic conditions or forest characteristics) and species observations (Elith and 
Leathwick, 2009; Guisan and Thuiller, 2005). iSDMs specifically leverage information across various 
data types (such as multiple biodiversity data sources, priors, offsets, statistical frameworks; Isaac 
et al., 2020). By balancing and combining strengths across datasets and frameworks, they have the 
potential to mediate existing spatial and thematic biases present in most openly available 
biodiversity datasets. Thus, SDMs can be used to assess impacts of forestry on biodiversity (e.g., 
Leitão et al., 2022; Oettel and Lapin, 2021) or identify areas of high conservation value (e.g., Jung 
et al., 2021). 

While SDMs have been applied frequently to support forest management (Pecchi et al., 2019), 
modelled species almost solely include forest tree species (e.g., Bonannella et al., 2022; 
Chakraborty et al., 2021; Mauri et al., 2022). Furthermore, environmental covariates often do not 
include information on land use and specifically detailed forest characteristics. Thus, we are 
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modelling forest biodiversity using multiple forest taxa (e.g., mammals, birds, or arthropods), and 
including covariates describing environmental conditions as well as forest characteristics affected 
by forest management practices. Biodiversity indicators are often employed to quantify diversity, 
typically focusing on the presence of species or species groups that serve as proxies for other 
species or general habitat characteristics (Gao et al., 2015). The forest taxa included in the 
biodiversity assessment of WP4 are selected based on their conservation and community relevance 
and are in line with current biodiversity monitoring frameworks and strategies. Furthermore, they 
cover a wide range of habitat requirements, dispersal abilities, or general mobility. 

This report introduces the modelling workflow in detail. First, we describe how biodiversity data is 
acquired and which climatic, environmental and forest characteristics covariates are included. 
Second, we outline all pre-processing steps such as data cleaning and harmonizing applied to both 
biodiversity data and covariates. Third, we present the iSDMs algorithms, and fourth, we present 
how model outputs are translated into biodiversity indicators. 
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2. Geographic and temporal extent and resolution 

The spatial extent covers all 27 member countries of the EU (Figure 1). We focus on the continental 
part of the EU, thus excluding all overseas territories and outermost regions (such as French 
Polynesia or the Canary Islands). Because outcomes of SDMs are generally affected by the spatial 
resolution (e.g., Farashi and Alizadeh-Noughani, 2018; Guisan et al., 2007), this is an important 
choice. Based on data availability, if possible, we use a spatial resolution of 8 × 8 km for model 
parametrization and inference. For future projections we rely on a coarser spatial resolution that 
is constrained by the resolution of G4M-X model outputs, namely ~5 arcmins (equals about 10 × 10 
km at the equator). 

Overall, the temporal extent covers the years 2015 to 2100. For model training, we use data from 
the year 2015 – 2020 (or as close as possible). For model projections, the trained models are 
projected up to the year 2100. Range shifts of species due to changing environmental conditions 
and forest characteristics are rather long-term, even though rates increase (Renwick and Rocca, 
2015; Williams and Blois, 2018). Thus, we are using a temporal resolution of 10-year intervals for all 
projections of species occurrence. 

 

Figure 1: Spatial extent of the biodiversity modelling framework. All included countries colored green. 
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3. Included data sets 

3.1. List of included species 

To assess impacts of forest management on diverse forest taxa of conservation and policy 
relevance, we are using the Annexes I and II of the Article 12 Birds directive and Article 17 Habitats 
directive, respectively, as well as species listed in the European Red Lists of Species. However, only 
species associated with forests or woodlands are considered as specified in the corresponding 
habitat descriptions (Table 1). Last, we include species previously modelled by consortium 
members on national scales. In total, this includes 1,274 species that can be summarized to 13 
species groups (Table 2). However, because some species are excluded during data acquisition or 
pre-processing, this species list only represents the potentially considered species. All species 
names were cleaned and harmonized using several databases with the help of the taxize R package 
(Chamberlain and Szöcs, 2013). 

Table 1: Data sources of potentially included species of the biodiversity modelling workflow. 

Data source Habitat selection criterion Number of 
species 

Annexes I/II of Article 12/17 Including “preferred” association to 
“woodlandForest” 

510 

European Red Lists of Species 
Habitat description includes: “forest”, 

“tree”, “wood”, “coniferous”, “broadleaf” 850 

Species previously modelled on 
national scale (SI S1) - 42 

 

3.1.1. Species occurrence data 

First, we use the Global Biodiversity Information Facility (GBIF), a database collecting biodiversity 
data from various sources (e.g., surveys, camera traps, remote sensing) and sampling methods 
(e.g., standardized protocols, opportunistic observations). We download observations for the years 
2015 – 2020 including only those that have spatial coordinates and no flagged geospatial issues. 
Furthermore, we only include observations by humans or machines (e.g., camera traps). The GBIF 
data includes only where a species occurs, but not where the species does not occur, we are using 
it as presence-only data. 

Second, for all bird species we are additionally using the eBird basic dataset (EBD; Fink et al., 2023; 
Sullivan et al., 2009). eBird is one of the largest citizen science projects and collects data about the 
presence and abundance of bird species using specified survey protocols. Additionally, the EBD 
includes so-called checklists that describe the corresponding birding activities (Sullivan et al., 
2014). We downloaded all observations and checklists for the years 2015 – 2020. 

Third, for all plant species we additionally use presence-absence data from the sPlotOpen database 
of vegetation plots. The sPlotOpen database consists of numerous regional, national, or 
continental vegetation-plot datasets that are located in natural or semi-natural vegetation 
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(Sabatini et al., 2021). We are including only sample plots that are located within forest vegetation 
as indicated in the database and that were sampled between the years 2015 – 2020. 

3.1.2. Range maps and atlas data 

Furthermore, we are using expert-derived range maps and atlas data in the modelling workflow. 
This includes data from the IUCN Red Lists of Threatened Species (IUCN, 2022), the Birds and 
Habitats directives atlas data, BirdLife International (BirdLife International and Handbook of the 
Birds of the World, 2022), the Global Assessment of Reptile Distributions (GARD; Roll et al., 2017), and 
the Societas Europaea Herpetologica atlas data (SEH Sillero et al., 2014). If several range maps are 
present for a single species, we summarize the them into a single map. However, while for some 
species groups range maps are available for most species (e.g., Mammals, Birds, 
Amphibians/Reptiles), for other species groups range maps are less or not available at all (e.g., 
Butterflies, Bees, Mollusca). 

Table 2: Number of forest-associated species separated by species groups. 

Species group EEA Habitats and 
Birds directives 

EU Red List of 
Species 

Previously modelled 
on national scale 

Amphibian 36 19 - 

Bees - 40 - 

Beetles 26 181 - 

Birds 179 37 - 

Butterflies 17 47 - 

Ferns 8 23 - 

Fungi/Lichens - - 11 

Mammals 108 14 - 

Mollusca 10 97 - 

Non-vascular Plants 16 - 21 

Vascular Plants 77 160 - 

Reptiles 23 17 - 

Other Insects 5 102 - 
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3.2. List of explanatory covariates 

To model and project species distributions, we are using several gridded datasets describing 
diverse aspects of climatic (e.g., precipitation) and environmental conditions (e.g., elevation), as 
well as forest characteristics (e.g., tree density or basal area). This includes both publicly available 
data (Figure 2, Table 3, 4) and data produced by other WPs and tasks in the ForestNavigator project 
(Figure 2, Table 4). Some of the data is static (or not projected in the future; e.g., the digital 
elevation model) and other is dynamic (or projected in the future). Dynamic covariates include 
climatic conditions and forest characteristics and are assumed to change in the future based on 
different climate change scenarios and forest management pathways. For all climatic covariates 
this includes the scenarios i) SSP1/RCP2.6, ii) SSP2/RCP7.0, and iii) SSP5/RCP8.5. For the forest 
characteristics, we use three forest stewardship storylines, developed by a different WPs and tasks 
in the ForestNavigator project, that reflect different forest management priorities, namely i) nature 
oriented, ii) multifunctionality oriented, and iii) wood-based economy oriented. 

Table 3: Covariates describing climatic and environmental conditions used within the biodiversity 
modelling framework 

Source Covariate Unit Native 
resolution Characteristic 

CHELSA 

Precipitation kg m-2 month-1 

0.0083° 
(~700 m) 

projected Temperature Celsius 

Temperature min/max Celsius 

Copernicus DEM 

Elevation Meter 

25 m static Slope Degree 

Aspect Degree 

ISRIC 

Clay g/kg 

0.0083° 
(~700 m) static 

Silt g/kg 

Sand g/kg 

Soil organic carbon dg/kg 

Available water capacity Percentage 

pHiHXO/ pHiKCl pHx10 

We use two main data sources to describe forest characteristics. First, for current forest 
characteristics, we use the Improved Gridded Forest Structure data (IGFS; Pucher et al., 2022) which 
describes forest characteristics around the year 2015. To describe projected forest characteristics, 
we additionally use G4M-X model outputs created within different WPs and tasks of the 
ForestNavigator project. 
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Table 4: Covariates describing forest characteristics used within the biodiversity modelling 
framework 

Covariates IGFSa 

(static, 8 km) 
G4M-Xb 

(projected, 5 arcmins) 

Tree age age class years 

Tree height m m 

Crown width - m 

Crown length - m 

Diameter at breast height cm cm 

Basal area m2/ha m2/ha 

Standing volume m3/ha m3/ha 

Stem density n/ha n/ha 

GPP/NPP - tC/ha/year-1 

LAI - m2/m2 

Species composition Dominant tree species group Dominant tree species group 

Litter tC/ha (foliage) tC/ha 

Mortality - n/ha/year-1 

Deadwood - tC/ha 

Sources: aPucher et al. (2022); bForestNavigator project 

In general, many of the covariates are available in both data sources (Table 4) and values of the 
IGFS data are reasonably well correlated to the initial timestep of the G4M-X model data (Figure 2). 
Yet, there is also variation between the two data sources which can be explained by various 
reasons. Even though the G4M-X model runs are initialized with the IGFS data, some covariates in 
G4M-X are based on internal relationships, such as the tree volume per hectare. Additionally, the 
IGFS includes natural regeneration, which is not included in G4M-X. Moreover, the IGFS data is based 
on mixed species and age classes per cell, while G4M-X uses a simplified species and age class 
representation per grid cell. 
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Figure 2: Comparison between continuous covariates describing forest characteristics based on the 
two used data sources, namely the Improved Gridded Forest Structure data (IGFS; Pucher et al., 2022) 
and the G4M-X model for the initial time step. 
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4. Biodiversity modelling workflow 

The biodiversity modelling workflow (Figure 3) is implemented in the open-source R programming 
language (R Core Team, 2021). All steps of the workflow are separated into several modular R 
scripts that are hosted and available on the IIASA GitLab instance and will be updated during the 
project duration. Key software packages used for general data (pre-)processing include, besides 
others, terra (Hijmans, 2021), sf (Pebesma, 2018), and packages from the tidyverse (Wickham et al., 
2019). To train and project all iSDMs, we are using the ibis.iSDM software package (Jung, 2023) and 
landscape metrics are calculated using the landscapemetrics software package (Hesselbarth et al., 
2019). All packages are openly available on the Comprehensive R Archive Network or GitHub. 

4.1. Pre-processing of data sets 

4.1.1. Climatic, environmental and forest covariates 
We crop and mask all covariate layers storing climatic and environmental conditions as well as 
forest characteristics to the same spatial extent using the NUTS regions provided by the GISCO 
statistical unit dataset (10 m scale spatial resolution). Within the spatial extent, all covariate layers 
are aggregated as close as possible to the same spatial resolution using cell arithmetic means or 
modal values for continuous and discrete layers, respectively, and resampled to the same 
background layer using bilinear interpolation for continuous values and nearest neighbor values 
for discrete values. We homogenize all NA cells across layers, remove correlated layers using 
Pearson’s r ≥ 0.7 as cut-off and scale values using the mean and standard deviation. However in 
order to guarantee that climate change scenarios are included, specific covariate layers were not 
removed even if highly correlated, for example temperature and precipitation.

https://gitlab.iiasa.ac.at/bec/forestnavigator
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Figure 3: Overview of the biodiversity modelling workflow.
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4.1.2. Preparation of species occurrence data 
Because model accuracy of SDMs decreases with less than about 25 – 30 observations (Hernandez 
et al., 2006; Wisz et al., 2008), we include only species with at least 35 observations, thus limiting 
our list of species that can be reliably estimated. 

The data quality on GBIF is frequently criticized, e.g., due to spatial biases based on sampling 
accessibility (Beck et al., 2014). Thus, before data can be used reliably, it needs to be pre-processed 
and cleaned. First, because the individual count value is not always provided or seems problematic 
(e.g., very high values), we set the individual count information to one for all GBIF occurrence data. 
Second, we remove all records with a coordinate uncertainty larger than 5 km or that do not report 
any coordinate uncertainty. Third, we use the CoordinateCleaner R package (Zizka et al., 2019) to 
further remove low-quality records from the data. Here we remove all coordinates located in 
capitals or urban areas, at country centroids, at the GBIF headquarters, at known biodiversity 
institutes, in the ocean, or general outliers and duplicates.  

For the eBird data, we transform the presence-only to presence-absence data, one of the 
advantages of eBird. This can be done due to the checklists, and specifically including only 
checklists which reports all observed species. Then, based on the assumption that if a specific 
species is not listed in a specific checklist, it was truly absence (so-called zero filling). Yet, the effort 
across checklists differs, which is a potential source of bias (Johnston et al., 2021). Thus, for better 
homogeneity of observation probabilities following the “Best Practices for Using eBird Data” 
(Strimas‐Mackey et al., 2023), we remove all observations that were collected during birding 
activities longer than 6 hours, with a travelled distance longer than 10 kilometer, or including more 
than 10 people. 

Because sPlotOpen is based on traditional vegetation plots, the data can be used as presence-
absence data (Sabatini et al., 2021). Similar to the eBird data, for all sample plots at which a specific 
species was not recorded, we assume that the species is absent. 

Geographic sampling bias is a well-known issue for (citizen-generated) species occurrence data 
(Hijmans, 2012) and occurrence data might not reflect where species are present, but rather where 
they are observed. This can be quantified by extracting the climatic and environmental conditions 
at all species occurrences and within expert-derived range maps/atlas data. The overlap between 
the values can be described by the modified Hellinger metric (Warren et al., 2008). For all species 
with a small overlap (e.g., < 25%), we assume that the occurrence data does not reflect the true 
range of a species, i.e., there is a geographic sampling bias (Figure 4). Spatial thinning is an 
approach to mediate this bias (Aiello-Lammens et al., 2015; Steen et al., 2021) and previous to 
training iSDMs assuming that more observations are made closely to highly populated areas we 
thin occurrence data for each species using the GHS-population grid from the year 2015 as bias 
layer (Schiavina et al., 2023). 
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Figure 4: Value overlap of climatic and environmental covariates between species occurrence data 
and expert-derived range maps. The overlap is calculated for different spatial resolutions indicated 
by color. The error bars describes the 25 % –75 % quantiles for each resolution and species group, the 
solid point the mean value. Additionally, the number of species with an existing range map per group 
is included. 

4.2. Species distribution modelling 

4.2.1. Training species distribution models 
We use covariates and species occurrence data for the years 2015 – 2020 (or as close as possible) 
to train the iSDMs using current climatic and environmental conditions as well as forest 
characteristics. For the parametrization, we used modelling approaches that requires presence-
absence data (Barbet‐Massin et al., 2012). Thus, for the presence-only datasets we simulate 
pseudo-absence data with a ratio of r = 2.5, i.e., creating just over twice as many absence points 
than presence points for each species. If a range map is available, all absence points are generated 
outside the species range, thus integrating this information into the prediction. If no range map is 
present, absence points are generated outside the minimum convex hull of all presence points. 
Similar, we subsampled all eBird and splotOpen absence data to the same presence-absence ratio. 

We used a sequential (or step-wise) integration of two models using different sets of covariates. 
More specifically, the first model uses climatic and environmental covariates and the resulting 
habitat suitability is used as an additional covariate in the second model including all forest 
characteristic covariates. Furthermore, in order to keep the models as simple as possible, we 
include covariates depending on the species group based on assumptions on their typical biology 
and habitats (Figure 5). For example, we assume that soil conditions are mostly relevant for 
members of the kingdoms Plantae and Fungi, but not for members of the kingdom Animalia. 



 

Public    
18 

Additionally, we use priors for all species and forest characteristic covariates where such 
information is available. By using priors, we are able to influence the direction and/or magnitude 
of model parameters based on a priori ecological knowledge. We include priors for saproxylic 
species (i.e., species depending on deadwood) as well as for species that are characteristic of old-
growth forests. This is based on published literature and databases (Blasi et al., 2010; Eckelt et al., 
2018; Gao et al., 2015; Graf et al., 2022; Lachat et al., 2012; Oettel and Lapin, 2021; Stokland and 
Meyke, 2008) and certain terms in the “Habitats” column of the European Red Lists of Species 
(namely “deadwood”, “woody debris”, “saproxylic” or “old-growth”, “primary forest”, “primeval 
forest”). For all saproxylic species we use a prior for mortality and deadwood, for all old-growth 
forest species, we set a prior for forest age and diameter at breast height (DBH). 

To model species distributions, we use different statistical frameworks (herein engines), such as 
elastic-net regularized generalized linear models (glmnet), Bayesian regularized regression (breg), 
or gradient descent boosting (gdb). For each engine, a habitat suitability projection and block 
validation via cross-validation is made. The output of the engines describe the probability of 
occurrence or relative habitat suitability in each raster grid cell. The projections of all engines can 
be combined (or ensembled) through a weighted mean using the cross-validation results. For 
further analysis of the results, the continuous habitat suitability maps are converted into binary 
presence-absence maps using threshold methods, such as a percentile threshold (e.g., p = 15%) or 
the minimum predicted value of a known species occurrence. 

4.2.2. Cross validation 
We use cross-validation to verify the habitat suitability maps and get insights into the precision and 
extrapolation errors of the trained models (Roberts et al., 2017). We use the blockCV R package 
(Valavi et al., 2019) to split the species occurrence data in k = 3 folds. For each fold, we hold back a 
test subset of the data during model training. The test subset is then used to evaluate the trained 
model using appropriate metrics, such as Continuous Boyce Index (Hirzel et al., 2006). The 
evaluation metrics are used as weights for model ensembling by constructing a weighted average 
of all candidate models, whereas all with a remarkably low evaluation metric could be removed 
from the ensemble. 
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Figure 5: Selection of covariates describing climatic and environmental conditions as well as forest 
characteristics for species groups. Covariates related to forest characteristics are highlighted red. 

4.2.3. Projecting species distributions 
In general, projecting species distributions to future scenarios and pathways follows the same 
workflow as modelling present habitat suitability. However, there are a few differences. First, 
instead of using covariates for the year 2015 – 2020, projected climatic covariates based on the 
SSP1/RCP2.6, SSP2/RCP7.0, and SSP5/RCP8.5 scenarios and forest characteristics based on the 
nature oriented, multifunctionality oriented, and wood-based economy-oriented forest 
stewardship storylines are used. Second, instead of using the non-projected IGFS data covariates, 
outputs from the G4M-X model are used to describe future forest characteristics. The previously 
trained iSDMs can now be used to project species distributions to future climatic conditions and 
forest characteristics. 

4.2.4. Biodiversity indicators 
Many different biodiversity indicators were developed in the past and there is an ongoing 
discussion about their advantages and disadvantages (e.g., Heink and Kowarik, 2010; Santini et al., 
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2017). For example, the European Environment Agency (EEA) developed the Streamlining European 
Biodiversity Indicators (SEBI), however, they are not criticism-free (e.g. Feest, 2013). Generally, the 
most common species groups used as indicators in forest ecosystem studies are arthropods 
(including saproxylic species), birds (including woodpeckers), or plants (Oettel and Lapin, 2021). 
Furthermore, mammals, reptiles, vascular plants, bryophytes, lichens, and fungus can be found in 
the literature (Gao et al., 2015). To describe and capture biodiversity, usually more than just one 
indicator is recommended (Santini et al., 2017). Thus, we are applying several indicators 
simultaneously. Indicators are calculated for all climate change scenarios and forest management 
pathways. Importantly, this also includes a comparison of the indicator values to a reference 
values, i.e., before projecting species distributions temporally. This allows us to compare the 
indicator to the “reference” state and to evaluate impacts of the scenarios and pathway on 
biodiversity. 

Habitat suitability and presence-absence maps: Habitat suitability maps for each species are the 
most unprocessed indicators that we produce. For each raster grid cell, the maps hold the 
probability of occurrence or (relative) habitat suitability. The maps allow to spatially highlight 
areas with biodiversity value. Furthermore, presence-absence maps based on thresholded habitat 
suitability values are produced for all species. These are closely related to the SEBI 01 indicator 
(“Abundance and distribution of selected species”). 

Area of suitable habitat: The presence-absence maps can be summarized to a single indicator by 
calculating the total area of all raster grid cells that indicate species presences, or in other words 
the total area of suitable habitat. While the total area of suitable habitat is an important indicator, 
also more detailed information about the suitable habitat patches (a patch being defined as 
connected habitat cells) are of interest. Thus, we are also including more detailed indicators such 
as the number of patches and the mean patch area. 

Configuration of suitable habitat: Besides the area of suitable habitat, also the spatial 
configuration of the habitat in the landscape is crucial (Lucas et al., 2019). Thus, we are using 
several landscape metrics (e.g., Gustafson, 2019) to further quantify the presence-absence maps. 
For example, this includes the mean distance to the nearest patch, or the percentage of like 
adjacencies. While the first contains information about landscape connectivity, the later describes 
the fragmentation of the landscape. 

Species richness: Species richness is one of the simplest biodiversity that can be computed by 
overlaying the presence-absence maps for several species or species groups. However, comparing 
species richness over a large spatial extent can be biased due to biogeographic patterns in 
biodiversity. Thus, we are also computing relative species richness, which controls for biases by 
expressing the potential species richness in relation to a local species pool (Vallecillo et al., 2016). 
We are using a moving window approach to determine the local species pool. 

Sørensen similarity index: The Sørensen index is another important biodiversity indicator that 
describes the similarity (or dissimilarity) between species of two communities in space or time 
(e.g., Magurran, 2013). Using the species richness maps, we can use the index to describe how 
biodiversity changes across pathways. To do this, the index is calculated comparing two local 
communities using a moving window, whereas the communities include the same spatial extent 
but different scenarios and pathways. 

We calculate all indicator values for the entire species pool, as well as for several subsets. This 
includes indicators separated by taxonomic ranks (e.g., families), different species groups (Table 
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2), or IUCN Red List status. Furthermore, we calculate all indicators only for species that are 
categorized as saproxylic species or characteristic of old-growth forest. This is based on the same 
published literature and databases as the priors of the model training. 

4.3. Exemplary trained species distribution model 

Figure 6 depicts an exemplary and preliminary trained iSDM for Dendrocopos leucotos (white-
backed woodpecker). The trained model uses the current climatic and environmental conditions 
as well as current forest characteristics. Thus, the figure does not reflect any “final” results, but 
rather demonstrates how the reference state for some biodiversity indicators is constructed. The 
habitat suitability map shows the probability of species occurrence based on a model ensemble 
using three engines (Figure 6a). The corresponding partial response functions show how the 
covariates affect the fitted suitability (Figure 6b). The continuous values can be transformed to a 
presence-absence maps using a threshold approache (Figure 6c). Finally, the presence-absence 
map can be quantified using several landscape metrics (Figure 6d). The biodiversity indicators and 
their change will be evaluated in comparison to the reference state under the climate change 
scenarios and forest management pathways (Figure 7). This allows us to compare and evaluate the 
different scenario and pathways and their impact on biodiversity. 
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Figure 6: Exemplary trained iSDM using current climatic and environmental conditions and forest 
characteristics used as reference state. Results include a) the habitat suitability map, b) the partial 
response functions of the model fit, c) the occurrence of the species based on a threshold, and d) the 
composition and configuration of the suitable habitat. 
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Figure 7: Conecptual figure of the projected area of suitable habitat. The figure shows a hypothesized 
reference state of the indicator and the relative changes under the three forest management 
pathways. 
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5. Summary of next steps 

So far, the focus has been on conceptualizing the modelling framework to assess impacts of 
climate change scenarios and forest-based mitigation pathways on biodiversity using iSDMs and 
biodiversity indicators. Additionally, covariates regarding climatic and environmental conditions 
as well as forest characteristics and species occurrence data were gathered and pre-processed. 

The next steps include gathering and pre-processing of currently missing data, most importantly 
projected forest characteristics provided by other WPs and tasks of the ForestNavigator project. 
Once the data is fully available, the iSDMs can be trained, projected on the EU scale, and finally the 
biodiversity indicators can be calculated. This comprises the following tasks: 

Training iSDMs based on current climatic/environmental conditions and forest 
characteristics: Once all covariates describing climatic and environmental conditions and forest 
characteristics are available and pre-processed, the iSDMs can be trained. This also includes the 
cross-validation of the models. 

Project future species habitat suitability: Using the projected climatic and environmental 
conditions, as well as forest characteristics, species habitat suitabilities can be projected on an EU 
scale. 

Compute biodiversity indicators: We will use the current and projected species habitat 
suitabilities to compute several biodiversity indicators and more importantly their change under 
the different climate change scenarios and forest management pathways. This will allow us to 
assess the impacts of different climate change scenarios and forest management pathways on 
biodiversity and contribute to informed decision-making in conservation and sustainable forest 
management.  
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Supporting information 
S1: Species previously modelled on national scale 

The following species were previously modelled on a national scale by consortium members of the 
ForestNavigator project. Thus, we are also included these species in our biodiversity modelling 
workflow to compare results across the EU scale modelling and the national scale modelling. 

Species Species group 

Trichaptum abietinum Fungus 

Fomitopsis pinicola Fungus 

Gloeophyllum sepiarium Fungus 

Antrodia serialis Fungus 

Phellinus viticola Fungus 

Phellinus ferrugineofuscus Fungus 

Phellinus nigrolimitatus Fungus 

Phlebia centrifuga Fungus 

Fomitopsis rosea Fungus 

Amylocystis lapponica Fungus 

Tetrastes bonasia Birds 

Perisoreus infaustus Birds 

Poecile cinctus Birds 

Aegithalos caudatus Birds 

Ficedula parva Birds 

Picus canus Birds 

Dendrocopos minor Birds 

Picoides tridactylus Birds 

Lobaria pulmonaria Lichens 

Anastrophyllum hellerianum Non-vascular plants 

Anastrophyllum michauxii Non-vascular plants 
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Buxbaumia viridis Non-vascular plants 

Callicladium haldanianum Non-vascular plants 

Calypogeia suecica Non-vascular plants 

Campylophyllum sommerfeltii Non-vascular plants 

Cephalozia catenulata Non-vascular plants 

Dicranodontium denudatum Non-vascular plants 

Dicranum flagellare Non-vascular plants 

Dicranum fragilifolium Non-vascular plants 

Geocalyx graveolens Non-vascular plants 

Herzogiella seligeri Non-vascular plants 

Herzogiella turfacea Non-vascular plants 

Jamesoniella autumnalis Non-vascular plants 

Jungermannia leiantha Non-vascular plants 

Lophozia ascendens Non-vascular plants 

Lophozia ciliata Non-vascular plants 

Lophozia longiflora Non-vascular plants 

Mylia taylorii Non-vascular plants 

Nowellia curvifolia Non-vascular plants 

Odontoschisma denudatum Non-vascular plants 

Scapania apiculata Non-vascular plants 

Scapania carinthiaca Non-vascular plants 
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